Chemical interference of pathogen-associated molecular pattern-triggered immune responses in Arabidopsis reveals a potential role for fatty-acid synthase type II complex-derived lipid signals.
نویسندگان
چکیده
We describe an experimental setup using submerged cultures of Arabidopsis seedlings in 96-well microtiter plates that permits chemical intervention of rapid elicitor-mediated immune responses. Screening of a chemical library comprising 120 small molecules with known biological activities revealed four compounds reducing cellulysin- or flg22-activated gene expression of the early pathogen-associated molecular patterns (PAMP)-responsive ATL2 gene. One chemical, oxytriazine, was found to induce ATL2 gene expression in the absence of PAMP. By monitoring additional flg22-triggered immediate early plant responses, we present evidence that two compounds, triclosan and fluazinam, interfere with the accumulation of reactive oxygen species and internalization of the activated plasma membrane resident FLS2 immune receptor. Using triclosan structure types and enzyme activity inhibition assays, Arabidopsis MOD1 enoyl-acyl carrier protein reductase, a subunit of the fatty-acid synthase type II (FAS II) complex, was identified as a likely cellular target of triclosan. Inhibition of all tested elicitor-triggered early immune responses by triclosan indicates a potential role for signaling lipids in flg22-triggered immunity. Chemical profiling of eca mutants, each showing deregulated ATL2 gene expression, with the identified compounds revealed mutantspecific response patterns and allowed us to deduce tentative action sites of ECA genes relative to the compound targets.
منابع مشابه
The use of protoplasts to study innate immune responses.
The use of plant protoplast transient expression system has facilitated the discovery and dissection of many signal transduction pathways in response to hormones, metabolites, and stresses. Recently, Arabidopsis protoplasts also have been used successfully to study plant innate immune responses triggered by pathogen-derived elicitors. Here, we describe the detailed protocols for studying innate...
متن کاملThe role of microRNAs and phytohormones in plant immune system
The plant-pathogen interaction is a multifactor process that may lead to resistance or susceptible responses of plant to pathogens. During the arms race between plant and pathogens, various biochemical, molecular and physiological events are triggered in plant cells such as ROS signaling, hormone activation and gene expression reprogramming. In plants, microRNAs (miRNAs) are key post-transcript...
متن کاملThe fog of war: How network buffering protects plants’ defense secrets from pathogens
Plants lack the mechanisms needed for adaptive immunity and thus rely entirely on innate immunity to protect themselves from pathogens and pests [1]. Their innate immune systems must protect against innumerable, highly adaptable viruses bacteria, fungi, oomycetes, nematodes, and insects. Two important components of the plant immune system are induced by the presence of pathogen molecules [1]. O...
متن کاملThe ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis.
Plant pathogens are perceived by pattern recognition receptors, which are activated upon binding to pathogen-associated molecular patterns (PAMPs). Ubiquitination and vesicle trafficking have been linked to the regulation of immune signaling. However, little information exists about components of vesicle trafficking involved in immune signaling and the mechanisms that regulate them. In this stu...
متن کاملThe GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity.
The first layer of immunity against pathogenic microbes relies on the detection of conserved pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI). Despite the increasing knowledge of early PTI signaling mediated by PRRs and their associated proteins, many downstream signaling components remain elu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 9 شماره
صفحات -
تاریخ انتشار 2007